yLpWin V3.02 *^{†‡§¶}

YEES ||

概要

急遽、フィルタ検討のため Win7 向けに修正しました。使う用事が発生した時点でバージョンアップしています。 簡単な伝達関数でもブレークポイント周波数を計算するのが面倒で、ボード線図作成に使用しています。 旧 Macintosh SymantecThinkC → SymantecC++ → Windows98 VC6 → VS20xx とコンパイル環境も変わっていま す。自作ソフトのなかで最も長期使用しているものです。

目次

1		機能全般1
	1.1	機能1
2		使い方2
	2.1	ツールバー2

2.2	操作手順3
2.3	プログラムについて5
2.4	グラフデータ保存6
2.5	グラフ画像保存6
2.6	プログラミング仕様7

1 機能全般

1.1 機能

- 伝達関数 f(s) からボード線図を作成する
- 伝達関数 f(s) の数値ラプラス逆変換を行う (FILT アルゴリズムで古いものです)
- データファイル保存機能(周波数 vs ゲイン&位相、CSV 形式)
- 生成したグラフ 画像ファイル保存機能(BMP, JPG, PNG 形式)

^{* 2014/08/07} V3.02 グラフ画像保存サイズ変更追加

[†] 2014/08/05 V3.01 BODE 設定 グラフ表示選択追加、メモリ管理変更

^{*} 2014/08/04 V3.00 Win7 向け新規

[§] 2014/08/04 ソフトウェア yLpWin は使用配布自由です。

^{¶ 2014/08/04} ソフトウェア yLpWin および関連文書 利用の結果生じた損害について一切責任を負いません。

yees@nifty.com (http://homepage2.nifty.com/yees/)

2 使い方

2.1 ツールバー

図 2 BODE 設定 ツールバー

図 3 FILT 設定 ツールバー

図4 プログラムソース ツールバー

- ① 新規ファイル 作業中のプログラムソース、グラフデータを破棄します
- ② ⑮ プログラムソースファイル (テキストファイル)を開きます
- ③ ⑯ プログラムソースファイル (テキストファイル)を保存します
- ④ カット (テキスト編集時)
- ⑤ コピー (テキスト編集時)
- ⑥ ペースト (テキスト編集時)
- ⑧ ⑭ ⑲ プログラムソースをコンパイルし、数値ラプラス逆変換を実行します
- ⑨ データ を保存します (ボード線図:周波数 vs ゲイン&位相、FILT:時間 vs レベル、CSV 形式)
- 10 バージョン情報を表示します
- ① BODE 設定の全項目を展開します
- 13 FILT 設定の全項目を展開します
- ⑦ プログラムソースウィンドウ内のフォントを変更します(ソース編集用のフォント)

2.2 操作手順

図5 起動

起動時、ソースプログラム例が予め入力されます。プログラム ソース例は0次ホールド(1.2sec サンプル&ホールド)です。

図6 画像入力

そのまま、

ツールバーボタン⑦または⑫または⑱で、プログラムソースをコ ンパイルし、ボード線図を作成します。ボード線図作成条件は、 BODE 設定ウインドウ内の指定によるもです。

5		
	4	
	解析設定	
	解析開始周…	0.1
	解析終了周	20
	解析データ数	80
	解析周波数	rad/sec
	解析周波数…	等比
	ソース内指定	無効
	グラフ表示設定	È
	グラフ表示選…	周波数 vs ゲイ
	最小周波数	0.1
	最大周波数	20
	周波数単位	rad/sec
	周波数軸	リニアスケール
	ゲイン軸	リニアスケール
	⊡ ゲイン dB7	くケール設定
	REF	10
	DIV	5
	🖃 ゲイン リニン	アスケール設定
	最小	0.000633825
	最大	1.25
	位相表示	-3600deg
	データ表示	点+線
	ゲイン表示色	📕 ff0000
	位相表示色	0000ff
	フォント	MS_UI Gothic(9)

解析設定 各項目は、データ計算時の条件です。

- 開始周波数 データ計算の開始周波数(間隔が等比の場合 0指定不可です)
- 終了周波数 データ計算の開始周波数(間隔が等比の場合 0指定不可です)
- データ数 データ数を指定します。
- 周波数数間隔
 - **等比**周波数軸が対数の場合、等間隔でデータを作 成します。
 - 等差 周波数軸がリニアの場合、等間隔でデータを 作成します。
- ソース内指定... 開始周波数/終了周波数/データ数は、プログラムソース内で指定できます(FREQ 行、または、OMEGA 行)そのソース内指定を有効とするか 無効とするかを指定します。
- **グラフ表示設定** 各項目は、グラフ表示についての設定です。各 項目の変更後フォーカスを失うと(他項目や他ウインド ウをクリック)反映されます。

図7 画像入力

★ - yLpWn : ファイル(F) 編集(E) 解析 表示(V) ヘルズ(H) : □ ☞ 🚽 ※ □ ☎ 🗲 🗲 🕒 🔍		
Constitut 1 1 1 1 1 1 1 1 1 1 1 1 1	BOOK BIRC + ix Fill BirC + ix Fill BirC + ix Fill BirC Services Services Services Services Services Services Services Services Services Services Services	* w
プログラム ソース 🗸 🖛 🗙	出力 🗸 🖬	×
b b A f f M(s) = (1-exp(-s*1.2))/s; FREQ 0.1, 0, 0, 80, GEO; TIME 0.01, 5, 80? FILT 4.0, 0.0, 4.0, 0.2;	syntax: OK	*
PROBE H(s); <	★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	

「周波数数間隔」を「等比」で実行した例

図 8 画像入力

図9 画像入力

FILI 設定	*
8 5	
□ 解析設定	
解析開始時…	0.1
解析終了時…	4
解析データ数	40
FILT A	4
FILT B	0
FILT K1	4
FILT K2	0.2
ソース内指定	無効
□ グラフ表示設計	定
最小時間	0.125
最大時間	4
レベル最小	-0.0821285
レベル最大	1.04135
データ表示	点 + 線
グラフ表示色	000000
フォント	MS UI Gothic(9)

図 10 画像入力

起動直後、そのまま、

ツールバーボタン⑧または⑭または⑲で、数値ラプラス逆変換を 実行した例。プログラムソース例の0次ホールド(1.2sec サンプ ル&ホールド)を、そのまま逆変換したもので、デルタ関数の積 分値(=1)が1.2sec 間ホールドされます。

- 解析設定 各項目は、データ計算時の条件です。
 - 開始時間 データ計算の開始時間(0以下不可)
 - 終了時間 データ計算の開始時間(0以下不可)
 - データ数 データ数を指定します。
 - FILT A 近似誤差を決める定数。概ね有効桁数。
 - FILT B f(s) が不安定系の場合の収束座標。
 - (参考)ステップ応答を求める場合、伝達関数に (1/s) を掛けるので、B = 0 を指定。
 - FILT K1
 - FILT K2 K1 と K2 を使って、打ち切り誤差を決定する。 詳細については下記文献を参照下さい。 電子通信学会誌(現、電子情報通信学会) 数値ラプラス変換[I],[II],[III] 1982/8 ~1982/10 (UDC 517.442 - 37) 著者:細野敏夫
 - ソース内指定... 開始時間/終了時間/データ数を、プログ ラムソース内の TIME 行で指定できます。また、 A/B/K1/K2 をソース内の FILT 行で指定できます。 それらのソース内指定を有効とするか無効とするか を指定します。
- **グラフ表示設定** 各項目は、グラフ表示についての設定です。各 項目の変更後フォーカスを失うと(他項目や他ウインド ウをクリック)反映されます。

2.3 プログラムについて

図 11 画像入力

プログラム ソース		×
66 A 🗲 🗲		
/ "BODE設定" の "ソース内指定" を有効にして ボード線図作成を実行ください。		*
/**** Ei-Quad ****/ C1 = 12-6; C2 = 12-6; R1 = 1000; R2 = 2000; R3 = 1000; R4 = 1000; R4 = 1000; R5 = 1000;		
R6 = 2000; LPF1(s)= 1/(R1*R4*C1*C2) / (s*s + s/(R2*C1) + 1/(R3*R4*C1*C2)*(R6/R5)));	
LPF2(s)= -R6/R5 * 1/(R1*R4*C1*C2) / (s*s + s/(R2*C1) + 1/(R3*R4*C1*C2)*(R6/R5)));	
BPF(s) = -s/(R1*C1) / (s*s + s/(R2*C1) + 1/(R3*R4*C1*C2)*(R6/R5))	;	
FREQ 1, 100000, 60, GEO;		
/* PROBE LPF1(s); */ /* PROBE LPF2(s); */ PROBE BPF(s);		
END;		÷
<	Þ	

図 12 画像入力

サンプルソースファイル「BiQuad.txt」を開き、ボード線図を作 成した例。

- 図は、サンプルソースファイル「BiQuad.txt」の内容です。
 - C 言語の数式記述に準じます。if, while, for, goto 等の繰 り返しや分岐制御に対応しておりません。
 - /* ~ */ はコメントです。 //行はコメント行として使用で きません。//は並列演算を記述する2項演算子としていま す。 A//B は、A*B/(A+B) と同等です。
 - 英数字は、実数変数です。C1, R1等
 - 英数字 (s) は、sの関数を扱う関数変数です。LPF1(s) 等
 - FREQ は、ボード線図の開始周波数 (Hz)、終了周波数 (Hz)、データ数を指定する行です。
 - OMEGA を使用すれば、開始周波数 (rad/s)、終了周波数 (rad/s)、データ数を指定できます。
 - PROBE は、どの関数変数についてボード線図を作成する のかを指定する行です。

プログラム ソース ************ 1/s * exp(-s*1.5); TIME 0.001, 5, 80; FILT 4.0, 0.0, 4.0, 0.2; /* step関数の1.5sec遅れ */

図 14 画像入力

図は、サンプルソースファイル「step 関数の 1.5sec 遅れ.txt」の 内容です。

サンプルソースファイル「step 関数の 1.5sec 遅れ.txt」を開き、数

値ラプラス逆変換を実施した例。

- sの関数変数を使用せず、sの関数内容をひとつだけ記述すれば、 それを解析対象とします。 これはボード線図作成についても同様です。
- TIME は、ラプラス逆変換の開始時間 (sec)、終了時間 (sec)、データ数を指定する行です。
- FILT は、定数 A、B、K1、K2 を指定する行です。

yLpWin は, 行列演算を行っていません。 従って接点方程式を解くことはできません。 入力式を順序処理するのみです。フィードバックがある場合

X(s) ------ H(s) |------ Y(s) | | | -----| G(s) |------

以下の例のように、Y(s) にフィードバックの公式を記述すれば、解析できます。

2.4 グラフデータ保存

No	omega[rad/	gain[linear]	phace[rad]	
	oniceapidar	Equifuncar]	pridacijidaj	
1	0.1	5E-005	-1.57082	
2	0.351899	0.000175949	-1.57088	
3	0.603797	0.000301899	-1.57095	E
4	0.855696	0.000427848	-1.57101	
5	1.10759	0.000553798	-1.57107	
6	1.35949	0.000679747	-1.57114	
7	1.61139	0.000805697	-1.5712	
8	1.86329	0.000931647	-1.57126	
9	2.11519	0.0010576	-1.57133	
10	2.36709	0.00118355	-1.57139	
11	2.61899	0.0013095	-1.57145	
12	2.87089	0.00143545	-1.57151	
13	3.12278	0.0015614	-1.57158	
14	3.37468	0.00168735	-1.57164	
15	3.62658	0.0018133	-1.5717	
16	3.87848	0.00193925	-1.57177	
17	4,13038	0.00206521	-1.57183	
18	4.38228	0.00219116	-1.57189	
19	4.63418	0.00231711	-157195	
20	4 88608	0.00244307	-157202	
21	5 13797	0.00256902	-157208	
22	5 38987	0.00269497	-157214	

ツールバーボタン⑨または、メニュー「解析」内の「グラフデー タファイル (CSV) 保存 ... 」でグラフデータを保存できます。 「出力」ウインドウの「グラフデータ」タブに表示中のデータを 保存します。

図 15 画像入力

2.5 グラフ画像保存

メニュー「ファイル (F)」内の「表示グラフを保存 … 」で表示グ ラフを画像ファイルに保存できます。

グラフを画像のデフォルトサイズは、水平方向 400 ピクセル、 垂直方向 300 ピクセルです。メニュー「ファイル (F)」内の「画 像サイズ変更 ... 」で変更できます。

図 16 画像入力

2.6 プログラミング仕様

```
プログラミング仕様
 (1)予約語(大文字、小文字またその混合区別なく)
             FREQ FREQUENCY
             OMEGA
             TIME
             FILT
             PROBE
             ARITH ARITHMETIC GEO GEOMETRIC
EXP LOG LN SIN COS TAN SINH COSH TANH SQRT
             END
(2) 演算子
                   加算
    +
                    減算
    *
                    乗算
    /
**
                    除算
                    累乗
                    並列 (x//y は、x*y/(x+y)と同等。演算の優先順位は乗除算と同等。)
    //
(3)関数
    EXP(x)
                                 対数(10底)
    LOG(x)
    LOG10(x)
                                 対数(10底)
   LN(x)
                                  自然対数
    SIN(x)
    COS(x)
    TAN(x)
    SINH(x)
    COSH(x)
    TANH(x)
    SQRT(x)
(3)パーサ規則
        ソース : 文リスト
         ;
        文リスト
          :
| 文リスト 文
          ;
        文
          ~
: /* コメント */
| ラプラス式
| ラプラス式 END
           | ブラフス式 END
| 英数字 = 実数式;
| ラプラス式関数 = ラプラス式;
| FREQ[UENCY] 数値 , 数値 , 数値 , 周波数列タイプ; (開始, 終了, データ数, ARITH または GEO の並び)
| OMEGA 数値 , 数値 , 数値 , 周波数列タイプ; (開始, 終了, データ数, ARITH または GEO の並び)
| TIME 数値 , 数値 , 数値 ; (開始, 終了, データ数 の並び)
           | FILT 数值 , 数值 , 数值 , 数值 ;
| PROBE 英数字 ;
                                                                                              (A, B, K1, K2 の並び)
           | PROBE ラプラス式関数 ;
               ;
           | END
           ;
        周波数列タイプ
          : ARITH[METIC]
                                                            等差数列の周波数で解析(リニアスケール上で等間隔)
                                                            等比数列の周波数で解析(ログスケール上で等間隔)
           | GEO[METRIC]
           ;
        実数式

    (天数式)
    (大支数式)
    (大支数)
    ((\chi)</li
               - 実数式 %prec -
実数式 ** 実数式
実数式 // 実数式
               EXP ( 実数式 )
               LOG ( 実数式 )
              LN(実数式)
SIN(実数式)
COS(実数式)
TAN(実数式)
               SINH (実数式)
COSH (実数式)
               TANH ( 実数式 )
               SQRT ( 実数式 )
               ( 実数式 )
               英数字
           |数値
           ;
```

ラプラス式関数 : 英数字 (s) ;